Главная » Статьи » Наука » Исследования

Теория струн и гравитация

<< К началу статьи

Теории струн исполнилось 37 лет, и что достигнуто? Главных достижений три. Самое важное из достижений заключается в том, что эта теория представляется логически непротиворечивым расширением физики. Мы исследуем и развиваем теорию струн уже многие годы, и она, совершенно определенно, выглядит полностью согласованной. Возможно, она не описывает реального физического мира; возможно, она неполна; но она определенно является согласованным логическим расширением физики. Некоторые из нас полагают, однако, что она обернется гораздо большим: что теория струн приведет к настоящей революции в физике, сопоставимой с революционными изменениями, приведшими к возникновению теории относительности квантовой механики в начале ХХ столетия. Две вышеназванные предыдущие революции в понятиях имели прямое отношение к двум ранее названым мною фундаментальным размерным константам: скорости света c и планковскому кванту действия h. Они расширили представления классической физики, однако релятивистские теории сводятся к классической физике при низких скоростях, а квантовая механика — к классической в системах, где действие достаточно велико по сравнению с h. Многие из нас полагают, что теория струн окажется столь же революционной, если не более, в отношении третьей универсальной размерной константы — постоянной Ньютона G или длины Планка lp. В то же время на расстояниях много больше lp теория струн сведется к классической квантовой теории поля, а струны будут выглядеть как частицы.

Два других достижения теории струн — это то, что она, во-первых, дает нам согласованную, конечномерную, хорошо определенную теорию квантовой гравитации, а во-вторых, оказывается очень богатой структурой, включающей, помимо гравитации, и все прочие элементы, необходимые нам для построения Стандартной модели, — калибровочные взаимодействия Янга—Миллса, кварки, лептоны и тому подобное. Вполне возможно, что в рамках теории струн мы даже сможем добиться искомого объединения.

Во-первых, теория струн демонстрирует непротиворечивость квантовой механики и общей теории относительности. Многие успели обеспокоиться по поводу их возможной несовместимости после многолетних безуспешных попыток квантовать уравнения Эйнштейна. Теория струн успешно создает естественную теорию гравитации, которая при больших расстояниях асимптотически сводится к теории Эйнштейна. Следовательно, она дает нам инструменты для исследования многих весьма странных явлений, происходящих при крайне сильной гравитации в глубоко продавленном пространственно-временном континууме, как, например, в окрестностях знаменитых черных дыр. Хокинг показал, что черные дыры, не способные что бы то ни было излучать в классическом понимании, на самом деле не являются абсолютно черными. Используя квантовую механику, он продемонстрировал, что черные дыры испускают-таки тепловое излучение. То есть черная дыра ведет себя как термодинамический объект с энтропией, температурой и излучением абсолютно черного тела. Однако Хокинг также пришел к заключению, что при формировании и последующем тепловом распаде черной дыры информация теряется, и, тем самым, нарушаются законы квантовой механики. Теория струн оказалась крайне полезной с точки зрения опровержения этого парадокса, бросающего вызов квантовой механике. Новые идеи теории струн позволили буквально спасти квантовую механику. Например, согласно Бекенштейну и Хокингу, черная дыра обладает энтропией. Очень странно для решения системы уравнений классической общей теории относительности обладать энтропией. Ведь энтропия — это обычно мера числа микросостояний макроскопической системы с фиксированными квантовыми числами. Оказывается, в рамках теории струн можно построить множество примеров контролируемых моделей черных дыр. В этих случаях мы можем деформировать теорию путем изменения параметров до случая, когда черные дыры можно будет описать как протяженные объекты, которые в теории струн принято называть D-бранами, и рассчитать число их возможных конфигураций с заданными характеристиками — массой, энергией, моментом импульса и зарядом. Стромингер и Вафа показали, что в полностью контролируемых нами случаях мы, в принципе, можем точно рассчитать число микросостояний в системе. Полученная в результате энтропия (логарифм числа микросостояний) в точности соответствует энтропии, предлагаемой Бекенштейном и Хокингом. Это демонстрирует, что калибровочная теория на D-бранах может в точности описывать число степеней свободы системы черной дыры.

Теория струн позволяет разрешить и парадокс потери информации. Для этого мы используем некоторые дуальности, выявленные недавно в теории струн. Дуальность — это взаимосвязь между двумя формулировками одной и той же теории. Одна из самых завораживающих дуальностей, выявленных в последнее время, — это связь между теорией струн на фоне искривленного анти-де-ситтеровского пространства — с пятью пространственно-временными измерениями и еще пятью пространственными измерениями теории струн, свернутыми в пятимерную сферу, — и обычной (но в высшей степени суперсимметричной) калибровочной теорией в четырех измерениях. Теорию последнего типа мы используем в Стандартной модели и понимаем ее очень хорошо. Это унитарная теория без информационных потерь. Поскольку мы можем смоделировать образование черных дыр в анти-де-ситтеровском пространстве, мы можем затем и спроецировать их эволюцию во времени на хорошо известное нам пространство калибровочной теории и показать тем самым, что, по крайней мере, в этом анти-де-ситтеровском пространстве излучение и испарение черных дыр — процесс унитарный. Фактически же, недавно Стивен Хокинг посетил Институт Кавли (KITP) с лекцией, на которой заявил, что ранее высказанные им опасения не обоснованы. Сейчас он полагает, исходя из указанной дуальности, что испарение черных дыр не нарушает законов квантовой механики.

Мы надеемся, что теория струн поможет разрешить и другие парадоксы квантовой гравитации, такие как парадокс космологической сингулярности, которую мы наблюдаем, экстраполируя историю Вселенной вспять до точки Большого взрыва. Возможно, нам удастся сформулировать принцип, предопределяющий историю Вселенной и объясняющий Большой взрыв. Может быть, теория струн позволит как-то сгладить сингулярность точки Большого взрыва и зафиксировать начальные условия в ней или, как предвидят некоторые, рассуждая о возможных сценариях развития теории струн, показать, что Вселенная вечно пульсирует. На самом деле, и я к этому еще вернусь, по моему мнению, в самом начале Вселенной времени не существовало, то есть, фактически, время — понятие привходящее. Пока что теория струн не преуспела в решении проблемы космологических сингулярностей, хотя проблемы многих статических сингулярностей в классической общей теории относительности с ее помощью решены. Здесь мы до сих пор наталкиваемся всё на те же трудности, что и в случае теории Эйнштейна. В этом плане потребуется еще очень много работы.

Единая теория

Наконец, достижение теории струн и в том, что она закладывает основу для построения единой теории природы. Квантуя струны, мы открыли, что они естественным образом порождают частицы и силы Стандартной модели, если строить решения сообразно нашим представлениям о четырехмерном мире. Выходит, однако, что струнные теории не могут не включать дополнительных пространственных измерений. Мы их не наблюдаем, значит их нужно сделать компактными, свернуть и, тем самым, скрыть, сделать ненаблюдаемыми. 20 лет назад мы нашли решения теории струн, в которых шесть пространственных измерений закольцованы и образуют особые шестимерные замкнутые пространства, так называемые многообразия Калаби—Яу (Calabi—Yau). Эти теории автоматически порождают частицы и силы, согласующиеся со Стандартной моделью. В те годы было много надежд, что нам удастся построить предсказуемое объяснение Стандартной модели с использованием теорий струн того времени. Это не просто, поскольку при высоких энергиях струнные теории суперсимметричны. Чтобы объяснить реальный мир, нужно понять механизм нарушения симметрии. Также нужно понять механизм замыкания на себя или компактификации ненаблюдаемых измерений. Наконец, нужно объяснить энергию вакуума, космологическую константу. В квантовой механике вклад в энергию вакуума вносят все динамические объекты — поскольку обладают в нулевой точке ненулевой кинетической энергией. Очень трудно понять, почему космологическая постоянная, обусловливающая ускоренное расширение Вселенной (а его мы, кажется, измерили) настолько мала, а мала она невероятно. Решение теории струн должно принести, среди прочего, ответ на этот сложный вопрос: почему так мала космологическая константа? В теории струн, в отличие от традиционной квантовой теории поля, космологическую константу можно рассчитать теоретически. В квантовой теории поля космологическая константа представляет собой подгоночный параметр — ее значение можно принять сколь угодно малым и даже нулевым. Но в теории струн выбора у нас нет, и обычно она получается чудовищно большой — в 10120 раз больше, чем нужно.

Недавно обнаружили, что пертурбативных решений, или так называемых «вакуумов» теории струн с космологической константой, имеется великое множество. Утверждают, что существует невероятное число, ~101000, таких метастабильных вакуумов с положительными космологическими константами; совокупность всех возможных миров называют «ландшафтом». Утверждают реальное отсутствие принципа выбора какого-либо одного из этого многообразия вакуумов, которые все нестабильны и потенциально подвержены квантово-механическому распаду. Вместо этого утверждают, что при развитии Вселенной непосредственно после Большого взрыва различные области проходят этап инфляционного расширения независимо друг от друга, и в различных областях Вселенной вакуум формируется по-разному, причем выбор вакуума происходит случайным образом. Единственный принцип, по которому наша Вселенная выделяется среди других, — «антропный принцип». Мы живем во Вселенной, которая способна поддерживать жизнь. Я нахожу такой подход не только безвкусным, но и преждевременным. Прежде всего, хотя у нас и имеется множество способов описания решений теории струн, мы до сих пор не знаем, что такое сама теория струн. К этому вопросу я еще вернусь. Но кроме того, пусть даже возможно существование множества метастабильных вакуумов, у нас же нет единой и согласованной струнной космологии. Все состояния, о которых рассуждают сторонники гипотезы ландшафта, метастабильны. Все до единого зависят от времени, и мы не способны понять ни их будущего, ни динамики их распада, ни, если на то пошло, их прошлого, которое, заметим, сингулярно.

Возможно, имеется лишь единственная и неповторимая уникальная космологическая теория, объясняющая происхождение нашего мира. Но поскольку я подозреваю, что грядущая революция в теории струн затронет наше понимание природы пространства и времени, может случиться, что критерии определения состояния Вселенной, вакуума, окажутся совсем иными. Я продолжаю верить в триумфальное достижение, рано или поздно, поставленной Эйнштейном цели — создание единой теории без свободных параметров или допущений. Теория струн обладает таким потенциалом, поскольку свободных параметров не содержит, однако мы по-прежнему не знаем принципа, определяющего состояние Вселенной.

Дуальности в теории струн

Самая большая проблема в теории струн заключается в том, что мы по-прежнему не знаем, что такое сама теория струн. У нас есть множество различных способов построения пертурбативных решений на различных участках этой теории. Мы открыли всевозможные удивительные дуальности, расширяющие наш контроль над теорией, но и дающие нам ясно понять, что мы не имеем ни малейшей идеи относительно полной структуры этой теории.

Теория струн, на первый взгляд, представляет собой весьма умеренную модификацию физики; мы просто заменяем частицы струнами. А затем начались всевозможные удивительные открытия. Например, гравитация всплыла наряду с калибровочными взаимодействиями. И все эти особые типы симметрий и сил не были привнесены в теорию — они просто следовали из нее. Другим сюрпризом стало открытие суперсимметрии, когда люди попытались построить спиновые струны — струны, описывающие, в том числе, фермионы со спином 1/2. Также было открыто, что струны могут жить только в пространстве-времени с числом измерений значительно больше традиционного — 10 или 11. Десять лет назад выяснилось, что струны — не единственное представление в теории струн, и что при взгляде с других точек зрения фундаментальную роль в ней играют принципиально новые протяженные многомерные объекты — так называемые D-браны. Наконец, в теории струн были открыты далеко идущие и очень сильные дуальности.

В свое время мы думали, что имеем пять отдельных струнных теорий — две теории замкнутых струн, две теории гетеротических струн и теорию открытых струн. Теперь мы понимаем, что всё это одно и то же, и умеем преобразовывать наблюдаемые физические величины из одной теории в другую. Например, возьмем какую-нибудь теорию — описывающую, скажем, движение суперструн в десяти измерениях. Мы знаем, как рассчитать разложение этой теории для случая слабой связи. Однако по мере усиления связи разложение разваливается, но у нас есть и другой, более удачный способ теоретического описания. При низких энергиях его можно замечательно описать в рамках одиннадцатимерной модели супергравитации. Более того, теория с 11 измерениями имеет и иное представление, в терминах обычной квантовой механики, — простое (суперсимметричное) квантово-механическое представление в матричной форме, где пространственные измерения вообще устраняются, и остается одно время. И такое представление дуально с представлением в рамках 11-мерной модели супергравитации при низких энергиях. Имеется и много других дуальных теоретических представлений, включая дуальность между теорией струн в анти-де-ситтеровском пространстве и четырехмерной калибровочной теорией, о которой я уже упоминал. Здесь мы имеем дело с дуальностью представлений в обычной четырехмерной калибровочной теории без гравитации и десятимерной теорией струн.

Все эти открытия стали полным сюрпризом. А что дальше? Кто знает?

Пространство-время обречено!

Я думаю, что состояние теории струн на сегодняшний день похоже на состояние квантовой теории непосредственно после появления модели атома Бора — до формулировки принципов квантовой механики. На том этапе у людей была лишь старая квантовая теория — набор правил для расчета спектральных линий. Старая квантовая теория хорошо работает в отношении атома водорода, а в отношении даже атомов гелия — уже не столь хорошо. И сами правила квантования выглядели на том этапе слишком парадоксально. А затем, после двенадцатилетней неразберихи, произошло концептуальное изменение — была разработана квантовая механика. По-моему, теория струн сейчас как раз и находится в подобной ситуации. У нас есть всевозможные способы описания теории струн с использованием различных моделей, различного числа измерений, с учетом гравитации и без нее, с различными степенями свободы; а что у нас отсутствует, так это понимание фундаментальных принципов динамики и симметрии, лежащих в основе теории.

И причина здесь кроется, по-моему, в самой концепции пространства-времени. Многие теоретики струн внутренне согласны с Эдвардом Виттеном, сказавшим, что пространство-время, должно быть, обречено. Понятие пространства-времени — это нечто такое, от чего, возможно, придется отказаться. Почему мы считаем, что пространство-время обречено? По многим причинам. Во-первых, в теории струн мы свободны варьировать число пространственных измерений путем изменения константы связи, силы взаимодействия. Одна и та же теория при слабом взаимодействии выглядит так, что струны движутся в десяти измерениях, а при сильном взаимодействии — в одиннадцати. Так что в теории струн число измерений пространства-времени — величина отнюдь не фундаментальная.

В теории струн мы также можем непрерывным образом изменять топологию пространства-времени. В обычной общей теории относительности этого сделать нельзя, не породив сингулярностей. Теория струн допускает выбор решения, классическим образом описывающего струну и движущегося в многообразии, где часть пространственных измерений компактно свернуты. Непрерывно изменяя параметры такого решения, мы достигаем точки, в которой струна переходит в пространство иной топологии. У нас есть описания, позволяющие нам исследовать гладкое изменение топологий, что, опять же, наводит на мысль о том, что в теории струн гладкие многообразия фундаментальной роли не играют.

Также, с операционной точки зрения, в теории струн не может идти реальной речи о произвольно малых расстояниях. Просто бессмысленно говорить о гладком многообразии пространства-времени с бесконечно малыми расстояниями. Гейзенберг вывел свой принцип неопределенности, рассматривая проблему измерения линейных размеров объектов при помощи микроскопа. Давайте рассмотрим вопрос об использовании микроскопа для определения малых расстояний в теории струн. Согласно теории струн, световые лучи, используемые в микроскопе, сами по себе состоят из струн. Выясняется, что помимо квантово-механической неопределенности при измерении расстояний — эффекта, заставляющего нас использовать световые лучи (или ускорители частиц) всё более и более высоких энергий для более точного определения местоположения частицы, — тут имеет место и струнная неопределенность. С повышением их энергии Е струны растягиваются. И рано или поздно они становятся больше объектов, которые мы пытаемся зондировать. Квантово-механическая неопределенность при измерении линейных размеров объекта пропорциональна 1/E, а струнная неопределенность растет прямо пропорционально E. Как следствие, минимальное расстояние, которое мы можем прозондировать, составляет порядка планковской длины. Поэтому нет никакого смысла говорить о линейных размерах короче планковских.

К тому же заключению можно прийти и другим путем — рассмотрев струны, когда одно из измерений компактно закольцовано. Выясняется, что теория струн, компактифицированная на круге радиуса R (в единицах Планка), может быть эквивалентно описана и в терминах теории струн, компактифицированной на круге радиуса 1/R (в единицах Планка). Занижая R, мы тем самым увеличиваем 1/R, а более точное описание дает модель с большим радиусом компактификации. И опять же, минимальное значение R определяется длиной Планка.

На сегодняшний день многие из нас убеждены, что пространство и время — x, y, z, t, — не первичные, а, скорее, производные понятия. У нас есть много примеров, указывающих на то, что часть или даже всё пространство — не фундаментально, но является лишь удобной крупномасштабной концепцией. Мы имеем дуальные представления теории струн на некоем фоне, из которых пространство, включая гравитацию, проистекает — частично или полностью. Учитывая урок теории относительности, мы обязаны считать, что раз пространство является концепцией производной, значит, и концепция пространства-времени должна являться таковой. Однако у нас нет ни малейшей идеи, как формулировать физику, если время не фундаментально. В конце концов, физику мы традиционно понимаем как науку о процессах, протекающих во времени, — сама роль физики сводилась к предсказанию будущего на основе настоящего. В квантовой механике динамика определяется через гамильтониан в качестве генератора унитарной временной эволюции. Если же время — понятие производное и не являющееся независимым, трудно представить, как нам дальше формулировать физику. По моему мнению, чтобы завершить построение теории струн, нам нужно понять, каким образом, подобно пространству, зарождается время. Мы не знаем как, и это, на мой взгляд, — крупный камень преткновения на пути к разгадке тайн теории струн.

Надежды, связываемые с теорией струн

Теория струн многое обещает нам в будущем. Она надеется окончательно объединить все силы природы, выработать новые концепции пространства и времени, разрешить важные загадки квантовой гравитации и космологии. Это амбициозные цели, и на их осуществление может уйти много времени. Потребуется, как я уже говорил, революция в нашем представлении о пространстве и времени. Между тем теория струн продолжает углублять наше проникновение и в обычную теорию Янга—Миллса. Теория струн также привела ко многим прозрениям в математике, созданию новых математических структур, методов и идей, о которых математики раньше просто не задумывались. Сегодня математики и струнные теоретики проводят совместные исследования во многих областях математики, например в алгебраической геометрии.

Теория струн также мотивировала новые умозрительные идеи, стимулирующие новые эксперименты. Одна из самых захватывающих связана со сверхбольшими пространственными измерениями. Первоначально мы считали дополнительные пространственные измерения теории струн закольцованными в малые разнообразия с размерами не более планковских. Но в последние годы пришло осознание, что некоторые из этих дополнительных измерений могут, напротив, быть очень масштабными и даже бесконечными, а не воспринимаем мы их лишь по той простой причине, что сами прикованы к трехмерной бране — гиперповерхности в мире с большим числом измерений.

Такая возможность весьма естественным образом следует из теории струн. Вполне возможно, что мы привязаны к бране, в то время как есть и другие измерения, возможно даже бесконечные. Единственный для нас способ увидеть или почувствовать другие пространственные измерения — через гравитационные флуктуации «экстрапространства». Примечательно, что подобные умопостроения не противоречат современным экспериментам. Многие не исключают возможности того, что новые эксперименты, скажем на LHC, могут привести к открытию этих макроскопических дополнительных измерений. Существование сверхкрупных дополнительных измерений привело бы к очень интересным эффектам. По некоторым сценариям, шкала Планка и шкала теории струн находятся при значительно более низких энергиях, и тогда можно представить себе, например, образование черной дыры в результате столкновения протонов и наблюдение возбужденных мод струн в обычных частицах.

Теория струн предлагает и другие феноменологические сценарии. Один из самых интересных заключается в том, что Вселенная заполнена космическими струнами межгалактических или даже вселенских размеров. Обычно струны крайне малы — их длина сопоставима с планковской. Для того, чтобы растянуть их до макроскопических размеров, потребовалась колоссальная энергия. Но согласно инфляционной теории, которая, похоже, вполне адекватно описывает космологию, вся наблюдаемая сегодня Вселенная возникла в результате раздувания крошечной области пространства размерами порядка длины Планка. Таким образом, в начале Вселенной размеры струн и области пространства, раздувшегося затем до видимой Вселенной, были равными. По мере раздувания этой области струны также растягивались. Расширение Вселенной обеспечивало и необходимую энергию для растяжения струн, и теперь они могут иметь протяженность через всю Вселенную. Такие струны будут флуктуировать и колебаться, пересекаться и взаимодействовать между собой. Наблюдать их можно либо благодаря производимому ими эффекту гравитационных линз, отклоняющих световые лучи, идущие от далеких галактик, либо по всплескам гравитационного излучения в результате их продольных колебаний. По некоторым сценариям, гравитационное излучение космических струн можно будет открыть уже на новом детекторе гравитационных волн LIGO (Laser Interferometer Gravitational Wave Observatory). Однако и макроскопические новые измерения, и космические струны — гипотезы слишком умозрительные с точки зрения современной теории струн. Мы определенно не можем утверждать, что вероятность их подтверждения сколько-нибудь велика. Однако они дают важный стимул к экспериментам по поиску новых эффектов на LHC и гравитационно-волновых детекторах и указывают на осязаемость близкой перспективы (хотя лично я считаю ее крайне маловероятной) прямого наблюдения струнных эффектов в лабораториях или обсерваториях.

Еще одно применение теория струн находит в моей любимой теории поля — КХД, теории сильного взаимодействия. Здесь теория струн может дать нам определенный аналитический контроль над теорией при больших расстояниях. КХД в каком-то смысле очень тесно увязана с теорией струн. Фактически, теория струн была придумана для описания ядерных сил. Мезоны представимы в виде силовых трубок. Поскольку кварки и антикварки, фактически, заключены внутри цветовых силовых трубок, порождающих мезоны, последние ведут себя во многом подобно струнам. В случае мезонов, однако, энергия натяжения струны составляет не планковскую величину, а всего лишь порядка 1 ГэВ. Теперь мы понимаем это дуальное струнное описание КХД и с позиции самой КХД, и с позиции теории струн. У нас есть данные, свидетельствующие о реальной корректности такого представления, о взаимном соответствии КХД и струнной теории. Сила хромодинамического взаимодействия, определяемая в КХД константой связи (реально ее следовало бы представлять как шкалу масс), эквивалентна натяжению струны в струнной теории. Спаривание струн, отвечающее за квантовые поправки к классической струнной теории, эквивалентно поправкам по числу цветов в калибровочной теории. В реальном мире мы имеем всего три цвета. Однако можно принять число цветов равным N, и хотя в реальном мире N = 3, расширение КХД на случай 1/N является неплохим приближением. Мы знаем, что при устремлении N к бесконечности, в случае фиксированной связи, спектр КХД принимает тот же вид, что и у невзаимодействующих мезонов, то есть, как мы полагаем, приходит в соответствие с состояниями, описываемыми классической теорией струн. Если бы мы знали уравнение классической теории струн для этого случая, мы могли бы найти его решение (опять же, классическое) и получили бы спектр, совпадающий со спектром мезонов при бесконечном количестве цветов. Следовательно, остается надеяться на то, что нам удастся сформулировать такую струнную теорию, найти решение и рассчитать спектр КХД аналитически для случая N = ∞, а затем рассчитать поправки для случаев 1/N. Используя открытые в последние годы дуальности, с обеих сторон — теории струн и КХД — ведутся интенсивные исследования, позволившие открыть много нового. Это добрый знак, дающий надежду на аналитическое расширение модели КХД на большие расстояния или режим сильных взаимодействий.

Скоро ли сбудутся обещания теории струн?

Так скоро ли сбудутся обещания теории струн? Шесть лет назад я смотрел в будущее менее оптимистично и говорил, что успеха теории струн придется ждать до следующего тысячелетия. Сегодня я более оптимистичен: я верю, что он придет уже в этом тысячелетии.



Источник
Категория: Исследования
Добавлено: 22.08.2012
Просмотров: 4850
Рейтинг: 5.0/1
Темы: Гросс, единая теория, Пространство-время, возникновение вселенной, Теория струн, наука, Теория струн и гравитация, гравитац, Дуальности в теории струн
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]