Главная » Статьи » Наука » Медицина

Наномедицина

Наномедицина

Нанотехнологии стали модой. На них возлагают большие, порой самые фантастические надежды, вплоть до быстрого превращения индустриально отсталых стран в передовые. Особенно радужными кажутся перспективы нанотехнологии в медицине. Кое-кто уже поговаривает о создании «наноботов» — микроскопических «умных» машин, которые будут проникать с кровью в любые закоулки человеческого тела и лечить там любые повреждения. Этим грядущим возможностям были недавно посвящены целых две международные конференции. Пока что, впрочем, таких «умных» машин еще нет, а вот применение обычных наночастиц в прикладной медицине уже открыло весьма многообещающие перспективы.

Будучи введены в организм, они благодаря своим исключительно малым размерам легко проникают в нужные места и дольше, по сравнению с крупными частицами, не выводятся из организма. Другой полезной для медицины особенностью наночастиц является повышенное (опять-таки в сравнении с крупными частицами) отношение поверхности к объему. Это позволяет прицепить к их поверхности много различных химических групп, в частности, таких, с помощью которых они могут выборочно цепляться к рецепторам только определенных клеток.

Сегодня в медицине наметились два основных пути использования наночастиц. Одним из них является диагностика заболеваний на максимально ранней стадии. Примером такого применения наночастиц может служить новейший метод, разработанный группой ученых Лондонского университета под руководством Молли Стивенс. Он позволяет обнаружить малейшие количества ферментов, связанных с развитием той или иной болезни, обеспечивая таким образом чувствительную и быструю диагностику рака, СПИДа и ряда других заболеваний. Ферменты — это белки, которые синтезируются в тех и или иных клетках и многократно ускоряют протекающие в них реакции, сами не подвергаясь при этом химическим превращениям. Каждый фермент имеет один или несколько активных центров, с которыми связывается субстрат (превращаемое вещество). Эти центры образованы особыми химическими группами в молекуле фермента, которые расположены таким образом, что «распознают» только «свой» субстрат. Соединившись с активным центром, молекула субстрата претерпевает определенные изменения (разрыв одних и образование других химических связей) и превращается в новую молекулу. Клетки, пораженные той или иной болезнью, продуцируют свои специфические ферменты, что и создает принципиальную возможность их обнаружить.

Чтобы реализовать такую возможность, группа Стивенс использовала специальным образом приготовленные наночастицы золота размером порядка десяти нанометров. В состоянии взвеси они были соединены с введенными в раствор цепочками, состоящими из связанных друг с другом аминокислот. Такие цепочки называются пептидами. Присоединив пептиды к поверхности золотых наночастиц, исследователи получили возможность на следующем этапе соединить эти частицы друг с другом в некую «сеть», потому что каждый синтезированный ими пептид имел на другом своем конце особую химическую группу под названием «Fmoc», способную склеиваться с себе подобной на другом пептиде.

Лондонская группа применила эту сеть наночастиц для диагностирования рецидивов рака простаты. В марте 2010 года исследователи доложили об успехе эксперимента. Были выявлены мельчайшие следы особого фермента nACT-PSA, который производят пораженные клетки в случае рака простаты. Если простата удалена, то повторное появление этого фермента при анализе крови сигнализирует о рецидиве. Обычные методы анализа не позволяют заметить рецидив на ранней стадии, потому что количества фермента еще очень мало. Метод группы Стивенс позволил искусственно «усилить» этот сигнал опасности, причем в качестве «усилителя» исследователи заставили работать сам искомый фермент.

Вот как это происходит. Исходный раствор, содержащий «сеть» наночастиц, имеет голубой цвет. Если же к этому раствору во время анализа добавить даже единичные раковые клетки, он становится красным. Цвет меняется потому, что вновь появившиеся раковые клетки выделяют молекулы фермента nACT-PSA, который имеет свойства протеазы, то есть разрушителя пептидных связей. Как только эти молекулы разрушают связи между пептидами, «сеть» распадается, а поскольку при этом на концах освободившихся пептидов появляются положительные заряды, частицы отталкиваются друг от друга и рассеиваются в растворе. Из-за этого раствор и меняет цвет, что происходит даже при наличии в пробирке всего нескольких молекул фермента, потому что одна и та же молекула, покончив с одной пептидной связью, тут же принимается за другую и в считанные минуты разрушает всю «сеть». Таким образом появляется возможность диагностировать болезнь на самых ранних ее стадиях.

Еще одна медицинская функция наночастиц — это доставка нужных химических веществ в поврежденные места организма и использование их там для лечения. Так, ученые из американского университета Пердью недавно создали полимерные наночастицы (они назвали их «сополимерными микроклетками»), способные доставлять в нейроны спинного мозга такие химические препараты, которые стимулируют восстановление нервных окончаний в случае повреждений позвоночника. А исследователи из Хьюстона создали «умные фуллерены» (полые шарики из атомов углерода), внутри которых находятся молекулы белка, реагирующего на повышенный уровень глюкозы в крови, и жировые микрошарики, содержащие инсулин, которые «по сигналу» этого белка высвобождают инсулин в кровь.

Особенно эффективным представляется — в перспективе — нановоздействие на раковые клетки. Мембраны раковых клеток по ряду причин более «рыхлы», чем мембраны здоровых клеток, и поэтому наночастицы, распознав их, легче проникают внутрь. А проникнув, легче накапливаются, потому что раковые опухоли не имеют той системы лимфатического «дренажа», которой располагают здоровые ткани. Эти особенности позволяют наночастицам достаточно плотно наполнять раковые клетки. Это, с одной стороны, поможет такие клетки (даже одиночные) лучше распознавать при сканировании, а с другой стороны — позволит доставлять прямо в них препараты, способные их уничтожить.

В последнее время на этом пути достигнуты многообещающие результаты. Так, группа американских исследователей под руководством профессора Батта синтезировала наночастицы, которые помогают уничтожать клетки, пораженные раком в толстом кишечнике, не затрагивая здоровые клетки. Эти наночастицы, по форме напоминающие гантели, сделаны, как бутерброд: крупица золота заключена между двумя крупицами окиси железа. Исследователи химически присоединили к этим «гантелям» антитела, способные распознавать специфические молекулы на поверхности раковых клеток. В результате наночастицы входят именно в эти клетки, после чего кишечник облучается лазером, что никак не влияет на здоровые клетки, но воспринимается частицами золота. Это вызывает разогрев и гибель раковых клеток.

Такой метод можно назвать «умной терапией», потому что он нацелен только на определенные — больные — клетки и убивает их и только их. Другой вариант «умной» терапии предложила в марте 2010 года группа канадских ученых. Эти исследователи показали, что углеродные фуллерены, подвергнутые короткому воздействию мини-лазера мощностью всего 500 милливатт, теряют свою прочность и так быстро выделяют энергию, что попросту загораются или даже взрываются. Введя в пробирке множество фуллеренов в культуру раковых клеток и направив на них луч мини-лазера, исследователи наблюдали, как эти клетки лопаются в результате выделения внутреннего тепла. Дело теперь «за малым» — научиться доставлять такие фуллерены в раковые клетки больного человека.

По другому пути пошел американский исследователь Марк Дэвис, который в том же марте 2010 года опубликовал результаты эксперимента, в котором наночастицы использовались для введения в раковые клетки особых химических «разрушителей». Дэвис создал наночастицы, состоящие из крохотного (размером около 70 нанометров) кусочка специально выращенного полимерного материала с прицепленными к нему молекулами siPHK. Так называются небольшие (длиной в пару десятков химических звеньев) молекулы, которые обладают замечательной в данном случае особенностью подавлять производство тех или иных белков. Для данного эксперимента были отобраны такие siPHK, которые нацелены на подавление белка RRM2 (этот белок, как считается, играет важную роль в размножении раковых клеток). Проверка происходила на трех раковых больных, которым в кровь были введены наночастицы с siPHK. По расчетам Дэвиса, они должны были опознать опухолевые клетки, проникнуть в них и там распасться на безвредный полимер и свободные siPHK, которые займутся подавлением RRM2. Результаты эксперимента оказались ободряющими. Биопсия показала, что во всех трех случаях наночастицы действительно проникли в раковые клетки, а в одном случае в клетках опухоли было обнаружено снижение концентрации белка RRM2, чего и следовало ожидать от действия этих РНК.

Любопытно, что во всех описанных выше экспериментах применялись золотые наночастицы. На данный момент они — главное орудие зарождающейся «умной нанотерапии». Это связано с тем, что золото обладает биологической совместимостью, инертно и легко модифицируется. Изменяя размер и форму золотых частиц, можно «настроить» их на поглощение разных длин «разогревающих» волн. Но оказалось, что золото имеет и другие полезные для нанотерапии свойства. Неожиданное недавнее открытие показало, что положительно заряженные наночастицы золота накапливаются в почках, а отрицательно заряженные — в печени и селезенке, что позволяет проводить весьма тонкое изучение состояния этих органов. Так что можно ожидать, что вскоре наряду с наноонкологией появятся также нанонефрология и другие подразделы наномедицины. Впрочем, ученые уже поговаривают о том, что использование наночастиц из окиси железа, иначе говоря — обычной ржавчины, тоже может принести большую медицинскую пользу. В частности, оно обещает в будущем совершить скачок в деле диагностики рака, поскольку магнитные свойства таких частиц позволят выявлять места их накопления с помощью метода магнитного резонанса. В общем фронт поисков расширяется, и это не может не радовать.

Магнитные наночастицы: достижения и перспективы

Будущее приходит по-разному. Иногда по-бетховенски властно грохоча кулаком, а порой — вот как лет двадцать назад, когда сначала в специальной литературе, а потом и в массовой печати начали впервые появляться отрывочные сообщения о новом и необычном биологическом инструменте — магнитных наночастицах. Поток сообщений постепенно нарастал, и теперь редко уже проходит месяц, чтобы не вспыхнул в печати или Интернете очередной манящий заголовок. Ну, вот, к примеру, такая новость — магнитные частицы в коронарных стентах. Установка коронарного стента — кардиологическая операция, которой подвергаются миллионы людей. Надувная проволочная трубка стента держит сосуды открытыми и обеспечивает беспрепятственную циркуляцию крови. Для того чтобы стент закрепился, эндотелиальные клетки сосуда должны постепенно обволочь трубку. Обычно это занимает четыре — шесть недель, и все это время пациента кормят аспирином, чтобы в стенте не образовался кровяной сгусток. Сейчас кардиологи клиники Майо в штате Миннесота (США) разработали новую процедуру. Перед операцией они извлекают эндотелиальные клетки из сосудов пациента, в лабораторных условиях размножают их, внедряют в них магнитные наночастицы и возвращают обратно в кровь. Затем вводят больному стент, предварительно его намагнитив. Клетки, содержащие магнитные наночастицы, влекутся к намагниченному стенту и надежно обволакивают его за считанные дни вместо недель.

А вот еще несколько недавно разработанных способов применения магнитных частиц в медицине. Сообщается, что они, нагреваемые внешним магнитным полем, способны «по требованию» высвобождать из себя многосоставной антираковый препарат прямо в опухоль. И те же наночастицы указывают на местонахождение опухоли.

В бельгийском исследовательском центре ИМЕК разработан метод создания устойчивых, совместимых с биологической средой магнитных наночастиц, несущих на себе многие наружные химические группы. Это открывает широкий спектр возможных биомедицинских приложений, начиная с доставки лекарств по точному адресу в организме и кончая направленной антираковой терапией.

Ученые из университета штата Джорджия (США) нашли способ вводить люминесцентно светящиеся магнитные наночастицы в одиночные раковые клетки, что позволяет находить их в организме, а затем, воздействуя внешним магнитным полем, удалять.

Список возможностей магнитных наночастиц постоянно растет — дело, похоже, идет к очередной технологической революции в медицине. И это повод приглядеться К магнитным наночастицам повнимательнее. На первый взгляд все кажется просто. Две главные особенности магнитных наночастиц очевидны уже из их названия — это малые размеры и магнитные свойства. Сначала о первом. Клетки организма имеют средний размер 8–10 микрометров (микронов, как говорили раньше): их отдельные «органеллы» — порядка десятых долей микрометра; размеры вируса — 20–450 нанометров, молекулы белка — 5–50 нанометров, гена — 2 нанометра в толщину и 10–100 нанометров в длину. Те наночастицы, о которых речь, имеют 10–100 нанометров в диаметре, и в этом смысле их введение в клетку вполне безопасно. В то же время эти малые размеры делают наночастицы, как мы видели, сравнимыми по величине с различными биологическими молекулами, и они оказываются удобным (а иногда — незаменимым) средством изучения этих объектов и воздействия на них.

Понятно, что это требует предварительного оснащения исходной наночастицы (в сущности, крупицы металлической окиси железа, кобальта, никеля, хрома или золота) различными «орудиями». Прежде всего она должна быть покрыта специально подобранными малыми молекулами — эта оболочка призвана сделать частицу «биосовместимой». Затем к ней присоединяются другие молекулы — «линки», которые одним концом прикрепляются к оболочке, а на другом конце несут различный «полезный груз»: антитела для распознавания патогенов, люминофоры, придающие частице способность светиться, и тому подобные «присадки». Но бывают и более сложные конструкции. Например, в одном из экспериментальных методов дистанционного разрушения опухолей используются полые и пористые наночастицы, внутри которых находится специальный краситель. Когда лучи лазера, сфокусированные на опухоли, нагревают частицу, молекулы красителя выходят через поры и под действием лучей разлагаются с выделением атомарного кислорода, губительного для клеток. В зависимости от назначения частиц могут быть и другие варианты. В конечном итоге такая «биологическая наночастица» имеет довольно сложный вид.

Второе отличительное свойство магнитных наночастиц — это, как уже сказано, их магнетизм, точнее — их суперпарамагнетизм. В каждом веществе атомы имеют микроскопические магнитные моменты, и, если поместить парамагнитное вещество во внешнее магнитное поле, эти атомные магнитики ориентируются вдоль такого поля. При этом кусок вещества намагничивается неоднородно: в нем образуются отдельные участки, домены, в каждом из которых атомные магнитики расположены строго параллельно, но, поскольку тепловое движение ворочает эти домены туда-сюда, их суммарные магнитные моменты не параллельны друг другу. Поэтому вещество в целом намагничивается слабо. Но если кусок вещества равен как раз одному такому домену, то в нем все магнитики будут параллельны и намагничивание будет много сильнее — оно и называется суперпарамагнетизмом. Остается сказать, что размеры домена составляют 10–50 нанометров, и становится, я думаю, понятно, почему наночастицы (то есть отдельные домены) парамагнитного вещества обладают такими уникальными магнитными свойствами, которыми не могут обладать большие крупицы.

Разумеется, наночастицы не создаются путем раздробления вещества, технология их изготовления более сложна, но оставим ее специалистам. Интересен вопрос — как направлять эти частицы в нужное место? Прилагая постоянное внешнее поле, можно только повернуть магнитный момент частицы как целого в ту или иную сторону. Для придания же частице поступательного движения требуется неоднородное поле, сила которого меняется вдоль нужного направления. В таком поле частица будет двигаться, грубо говоря, в сторону нарастания поля (не случайно порошок железа в школьном опыте стягивается именно к полюсам магнита). В биологической практике такие неоднородные поля создаются специальным образом. Вот, например, как выглядит использование магнитных наночастиц для сепарирования биомолекул. К частицам присоединяются антитела, которые имеют способность другим своим концом соединяться с какими-то определенными клетками; эти частицы вводятся в раствор различных клеток, где благодаря антителам соединяются со «своими» клетками, после чего раствор пропускается по трубке, в определенном месте которой намотана проволока, по которой идет ток, создающий неоднородное магнитное поле. Градиент поля останавливает те клетки, на которых есть наночастицы, и пропускает раствор со всеми другими клетками, а специальные приборы замеряют суммарную намагниченность остановленных частиц, и по ней вычисляется количество отсепарированных клеток. Эта методика уже с успехом опробована на эритроцитах, клетках опухоли легких, бактериях, отдельных молекулах ДНК и т.д.

Другое широкое применение магнитные наночастицы нашли в борьбе с раком. Обычные методы химиотерапии страдают тем недостатком, что лекарства не могут быть доставлены только в нужные места. Их просто вводят в организм, и поэтому они неизбежно попадают и туда, куда не следует, зачастую вызывая опасное побочное действие. Ненаправленное введение лекарств требует увеличения их дозы (чтобы достичь нужной их концентрации в опухоли), что усиливает эти вредные последствия. В 1970-е годы было предложено направлять лекарства в опухоли с помощью магнитных частиц, и сейчас, с развитием нанотехнологий, это стало возможным благодаря использованию описанного выше метода неоднородного магнитного поля. Этот метод открыл также возможность внедрять наночастицы внутрь опухолевых клеток, чтобы затем разрушать эти клетки путем нагревания частиц.

Что же в итоге? Как уже сказано выше, возможности магнитных наночастиц фантастичны, экспериментальные успехи в их применении несомненны. Сегодня медицина находится на пороге революционных изменений, на стадии перехода — точнее, поиска путей перехода — от успешных экспериментов в контролируемых лабораторных условиях к безопасным клиническим испытаниям. Но можно надеяться, что через считанные годы эти пути будут найдены.

Оригами на службе человечества

Не говорите мне о Сколкове. Сколково — оно еще вона где, а реальная нанотехнология — она уже вот, в статье, опубликованной в американском журнале «Science». Называется эта статья «Наноробот для направленного переноса молекулярного груза», а речь в ней идет о программе создания наноустройства, которое сможет находить и уничтожать раковые клетки в популяции клеток здоровых. Не больше и не меньше. Поэтому давайте расскажем об этом открытии, тем более что рассказ этот обещает быть интересным.

Начнем с оригами. Да, я помню, что обещал поведать о нанороботе, но именно поэтому начать нужно с оригами. Оригами — это японское слово, и означает оно чисто японское, ставшее сейчас вездесущим, искусство складывать трехмерные формы из плоских листков бумаги (применять клей традиция не разрешает). Это большое искусство, а также сложная математическая задача. Так вот, в 2006 году сотрудник Калифорнийского технологического института Поль Ротемунд показал, что трехмерные сооружения можно строить, более того — что они могут строиться сами собой, из молекул ДНК. Метод Ротемунда получил название «ДНК-оригами». Сегодня он является одним из самых перспективных направлений в той части нанотехнологии, которая занимается созданием микроскопических структур из молекул ДНК.

Молекула ДНК оказалась особенно удобной для создания микроскопических структур в силу некоторых своих особенностей. Каждая такая молекула — это очень длинная цепь химических звеньев (нуклеотидов) четырех разных типов — А, Г, Ц и Т. В такой цепи могут быть миллионы звеньев. Большая длина позволяет строить из одной молекулы достаточно сложные структуры. Второй важной особенностью ДНК является химическое сродство ее нуклеотидов. Их химические свойства таковы, что нуклеотид Т энергично связывается с А, а Г — с Ц. Это создает возможность изгибать цепочку и удерживать ее в изогнутом состоянии. Для такой цели используется короткая цепочка из тех же нуклеотидов, называемая ДНК-олигомером. Такой олигомер, состоящий из нескольких десятков или сотен звеньев, можно создать искусственно, в пробирке, задав ему любое нужное расположение нуклеотидов. Его концы (например, нуклеотиды А и Г) можно химически присоединить к любым двум местам длинной цепи, где стоят «родственные» им нуклеотиды Т и Ц. Если эти места далеки друг от друга, а олигомер достаточно короток, то для такого присоединения потребуется изогнуть длинную цепь и сблизить те ее участки, где должны крепиться концы олигомера. Но потом, соединившись с этими участками, олигомер будет уже сам удерживать цепь в таком изогнутом состоянии. Иными словами, он будет работать как скрепка.

Ротемунд начал с плоских структур. Но затем, спустя три года после его открытия, группа, в которую входили американские, немецкие и датские ученые, сумела создать, опираясь на метод Ротемунда, крайне важные — уже в прикладном смысле — трехмерные ДНК-структуры. С помощью 250 олигомерных скрепок они «связали» из длинной ДНК шесть плоских квадратиков и соединили их в виде наноящика с открывающейся крышкой. Этот успех, в свою очередь, вызвал новый поток работ, последней из которых (на момент написания этой книги в 2013 году) стало исследование гарвардских ученых Шона Дугласа и Идо Бахелета, с которого мы начали этот рассказ. В этой работе был сделан очередной шаг к практическому использованию ДНК-оригами для борьбы с раковыми клетками. Но для того, чтобы понять, в чем состоит новизна этого шага, следует опять сделать небольшое отступление. Уже в 2009 году ДНК-ящики были созданы не просто так, а для доставки лекарственного груза в нужные места организма. Они делались такого размера, чтобы в них умещались достаточно большие молекулы, обладающие способностью так или иначе вредить раковым клеткам. Эти ящики обладали своего рода «замками», которые позволяли крышке открываться только в присутствии раковых клеток, не раньше. Такие «замки» придумал еще в 1990 году гарвардский биохимик Шостак. Создав в пробирке случайную смесь ДНК-олигомеров, он вводил в эту смесь различные биологические молекулы и смотрел, с каким олигомером та или иная такая молекула соединяется. После этого можно было использовать этот олигомер как средство распознания данной биомолекулы в любом научном эксперименте, где она появлялась. Шостак назвал эти распознающие ДНК-олигомеры «аптамерами» и первым применил один такой аптамер для опознания белка тромбина, играющего важную роль в свертывании крови. Уже через несколько лет ведущие фармацевтические фирмы начали работы по созданию лекарств с присоединенным к ним аптамером, призванным «наводить» это лекарство на белок, который «повинен» в той или иной болезни.

Так вот, первые ДНК-ящики были снабжены замком в виде аптамера, призванного «распознать» определенный белок на поверхности раковой клетки и соединиться с ним. В процессе такого соединения аптамер, согласно сделанным расчетам, должен был приподнять крышку ящичка и выпустить наружу находящуюся в нем молекулу, призванную убить раковую клетку. Уже тогда Ротемунд указал, что у такого «замка» есть недостатки — он может открываться преждевременно, потому что аналогичный белок может встретиться ему в другом месте, на какой-нибудь другой клетке или в свободном виде. Упомянутая выше работа Дугласа — Бахелета как раз и была направлена на преодоление этого недостатка и, по мнению того же Ротемунда, сделала в этом направлении весьма существенный шаг. В этой работе ДНК-оригами был сконструирован по компьютерной программе, разработанной Дугласом. В соответствии с этой программой ДНК и олигомеры сами собой складывались в пространственную структуру, имеющую вид «бочонка» диаметром 35 нанометров. Внутри этой структуры находятся двенадцать «крючков» (особых олигомеров) для «подвешивания» на них двенадцати разных видов противораковых молекул, а снаружи расположены еще два таких же «крючка» — для двух аптамеров. Эти два аптамера являются своего рода «замком с шифром»: «бочонок» открывается лишь в том случае, если они оба найдут свои цели на поверхности подозрительной клетки.

Авторы испробовали шесть разных комбинаций по два аптамера, каждая из которых была сконструирована специально для распознания белков на разных видах раковых клеток. Они показали, что, например, те «замки», которые были рассчитаны открываться в присутствии клеток лейкемии, действительно находят эти клетки в смеси нескольких видов злокачественных клеток — ошибок не было. Аналогичный результат был получен для «замков», предназначенных открывать «бочонок» при контакте с той или иной иммунной клеткой (в этом случае «груз» бочонка был предназначен для активизации работы этих клеток). Более того, они показали, что аптамеры можно запрограммировать так, чтобы они открывались только при контакте с раковой клеткой, находящейся на том или ином этапе развития. Это свидетельствует о том, какие обнадеживающие возможности таятся в программировании ДНК-структур.

Теперь на очереди — испытание нового наноробота в условиях живого организма. Дуглас и Бахелет планируют начать с мышей. Они предвидят трудности, пути преодоления которых еще потребуют, возможно, дальнейших исследований. Некоторые из таких трудностей очевидны заранее. В живом организме циркулируют иммунные клетки, призванные распознавать и атаковать чужеродную ДНК. Далее, там имеются белки-нуклеазы, каждый из которых способен разрывать связи внутри тех или иных ДНК. Это может вынудить исследователей покрывать свои нанороботы специальными защитными веществами. Кроме того, все такие нанороботы довольно быстро поглощаются печенью. Так что препятствий много. Но и новые пути обнаруживаются очень быстро.

Закончу показательным примером. Еще год назад считалось, что очень серьезной трудностью является доставка наноробота внутрь раковой клетки. А недавно группа оксфордских исследователей создала очередную структуру, которая показала способность проникать внутрь раковых клеток определенного типа и сохраняться там в течение почти 48 часов.

Отрывок из книги Рафаила Нудельмана "Неизвестное наше тело"
Категория: Медицина
Добавлено: 27.02.2017
Просмотров: 1594
Рейтинг: 5.0/1
Темы: Наномедицина, нанороботы, днк, наука, нанотехнологии, медицина
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]