09:32

Современный мир и транзистор

Современный мир и транзистор

В 1947 году был создан первый в мире транзистор. В наши дни ежегодно производится более 10 000 000 000 000 000 000 транзисторов, что во 100 раз больше, чем число рисовых зерен, поглощаемых ежегодно семью миллиардами жителей Земли. Первый в мире транзисторный компьютер был собран в 1953 году в Манчестере и содержал 92 транзистора. Сегодня можно купить более 100 000 транзисторов по цене рисового зернышка, а в вашем мобильном телефоне их около миллиарда. В этой главе мы опишем работу транзистора, которую, безусловно, можно считать самым важным приложением квантовой теории.

Как мы уже видели в предыдущей главе, проводник потому и проводник, что некоторые электроны располагаются в зоне проводимости. По этой причине они довольно мобильны и могут «перетекать» по проводу, когда подсоединяется батарея. Уместна аналогия с текущей водой; батарея заставляет ток течь. Для иллюстрации идеи можно воспользоваться даже концепцией «потенциала»: батарея создает потенциал, внутри которого движутся электроны зоны проводимости, и потенциал в каком-то смысле создает «склон». По этому склону в зоне проводимости материала электрон «скатывается», обретая при движении энергию. Это другой способ представления небольших толчков, о которых мы говорили в прошлой главе, при котором не батарея толкает электрон с ускорением по проводу, а образуется что-то вроде падения воды с холма. Это хороший вариант визуализации проводимости электричества электронами, им мы и будем пользоваться до конца этой главы. В полупроводниках, таких как кремний, происходит нечто очень интересное: ток переносится не только электронами в зоне проводимости. Электроны в валентной зоне тоже вносят свой вклад. Посмотрите на рис. 1. Стрелка показывает, как электрон, изначально инертно покоящийся в зоне валентности, поглощает некоторое количество энергии и переходит в зону проводимости.

Пара электрон-дырка в полупроводнике

Рис. 1. Пара электрон-дырка в полупроводнике

Конечно, после этого электрон становится гораздо более мобильным, но мобильность обретает и еще кое-что: в зоне валентности образуется дырка, и она дает возможность маневра электронам из зоны валентности, до того столь же инертным. Как мы могли видеть, подсоединение батареи к этому полупроводнику заставит электрон из зоны проводимости совершить энергетический скачок, вызвав тем самым движение электрического тока. Что случится с этой дыркой? Электрическое поле, созданное батареей, может заставить электрон, находящийся в валентной зоне в каком-то более низком энергетическом состоянии, перепрыгнуть в эту свободную дырку. Теперь дырка заполнена, но появляется дырка «глубже» — на более низком энергетическом уровне в валентной зоне. Когда электроны в валентной зоне перескакивают в свободную дырку, та вращается. Вместо того чтобы отслеживать движение всех электронов в почти заполненной валентной зоне, мы можем отслеживать местоположение дырки, забыв об электронах. Такой оптимизацией подсчета привычно пользуются специалисты по физике полупроводников. Нам она тоже облегчит жизнь.

Приложенное электрическое поле приводит в движение электроны зоны проводимости, создавая ток, и нам хотелось бы знать, что происходит в этом случае с дырками в валентной зоне. Мы знаем, что электроны валентной зоны не могут двигаться, поскольку их почти полностью сдерживает принцип Паули, но под действием электрического поля они чуть сдвигаются, и дырка двигается наряду с ними. Наверное, это противоречит интуиции, так что, если вы не можете смириться с тем, что когда электроны в валентной зоне смещаются влево, то и дырка тоже смещается влево, рассмотрите следующую аналогию. Представьте обычную очередь. Расстояние между людьми составляет 1 метр, но где-то в середине очереди одного человека не хватает. Эти люди — аналог электронов, а отсутствующий человек — аналог дырки. Теперь вообразите, что все эти люди продвинулись на метр вперед, так что каждый из них оказался там, где до него стоял идущий перед ним в очереди. Очевидно, что брешь в очереди тоже продвигается на метр. Так ведут себя и дырки. Кроме этого, можно представить, как вода течет по трубе: пузырек воды будет двигаться в том же направлении, что и струя, и эта «отсутствующая вода» соответствует дырке в валентной зоне. Как вы помните, электроны, движущиеся в верхней части заполненной энергетической полосы, получают ускорение от электрического поля в обратную сторону относительно электронов, движущихся в нижней части той же полосы. Это значит, что дырки, которые находятся вверху валентной зоны, двигаются в противоположном направлении по отношению к электронам, находящимся в нижней части зоны проводимости.

Результат таков: мы можем изобразить поток электронов в одном направлении и соответствующий ему поток дырок в другом. Можно считать, что дырка имеет электрический заряд, прямо противоположный заряду электрона. Вспомните, что материал, через который текут наши электроны и дырки, в среднем электрически нейтральный. В любой отдельно взятой области материал не имеет заряда, потому что отрицательный заряд электронов отменяет положительный заряд, переносимый атомными ядрами. Но если мы создадим пару электрон-дырка, переместив электрон из валентной зоны в зону проводимости (так, как мы уже описали), образуется свободно движущийся электрон, который создает избыток отрицательного заряда по сравнению с обычными условиями в этой области материала. Точно так же дырка — это отсутствие электрона, и в месте, где она есть, преобладает положительный заряд. Электрический ток по определению оказывается величиной, с которой движутся положительные заряды, так что электроны вносят в ток отрицательный вклад42, а дырки — положительный, если движутся в одном и том же направлении. Если, как в случае с нашим полупроводником, электроны и дырки движутся в противоположных направлениях, то они складываются, в итоге получается больший заряд и, следовательно, большая сила тока.

Хотя все это кажется довольно запутанным, результаты ясны как день: мы должны представить, что течение электричества через полупроводник — это течение заряда, а он состоит из электронов в зоне проводимости, движущихся в одном направлении, и дырок в валентной зоне, движущихся в обратную сторону. Эта ситуация отличается от движения тока в проводнике, когда сила тока определяется движением огромного количества электронов в зоне проводимости, а дополнительная сила тока, создава­емая при образовании пар электрон-дырка, пренебрежимо мала. Понять пользу полупроводников — значит осознать, что ток, идущий по полупроводнику, нельзя назвать неконтролируемым движением электронов по проводу, как в проводнике. Это гораздо более сложная комбинация движений электронов и дырок, которая при должной настройке может быть использована для создания микроскопических устройств, способных обеспечить полный контроль за движением тока по цепи.

Следующее изложение — вдохновляющий пример прикладной физики и техники. Идея в том, чтобы сознательно загрязнить кусок чистого кремния или германия для создания некоторых новых доступных энергетических уровней электронов. Эти новые уровни позволят контролировать поток электронов и дырок, идущий через полупроводник, как мы можем с помощью клапанов контролировать движение воды по трубам. Конечно, контролировать ток, идущий по проводу, в принципе легко: достаточно дернуть рубильник. Но мы сейчас не об этом, а о том, как создать более тонкие переключатели и динамически контролировать с их помощью ток в цепи. Эти переключатели — строительные кирпичики логических схем, а из логических схем, в свою очередь, состоят микропроцессоры. Итак, как же все это работает?

Левая часть рис. 2 показывает, что происходит, если кусок кремния загрязнен фосфором. Уровень загрязнения можно точно контролировать, что очень важно. Представьте, что в кристалле чистого кремния каждый атом последовательно замещается атомом фосфора. Атом фосфора попадает на место, освобожденное атомом кремния, и единственная разница состоит в том, что у фосфора на один электрон больше, чем у кремния. Этот лишний электрон очень слабо, но связан со своим атомом, он не до конца свободен и занимает энергетический уровень, находящийся сразу под зоной проводимости. При низких температурах зона проводимости пуста, и лишние электроны, появляющиеся из атомов фосфора, располагаются на донорном энергетическом уровне, отмеченном на рисунке.

Новые энергетические уровни

Рис. 2. Новые энергетические уровни, появившиеся в полупроводнике n-типа (слева) и полупроводнике p-типа (справа)

При комнатной температуре пара электрон-дырка в кремнии создается очень редко. Лишь один из примерно триллиона электронов получает достаточно энергии от термических колебаний решетки, чтобы перескочить из валентной зоны в зону проводимости. Напротив, поскольку донорный электрон в фосфоре очень слабо связан с атомом, велика вероятность, что он сможет совершить небольшой скачок с донорного уровня в зону проводимости. Итак, при комнатной температуре при уровне загрязнения выше чем один атом фосфора на триллион атомов кремния, в зоне проводимости будут преимущественно присутствовать электроны, освобожденные атомами фосфора. Это значит, что можно с очень высокой точностью контролировать присутствие мобильных электронов, которые способны проводить электричество, просто варьируя степень фосфорного загрязнения. Поскольку ток в этом случае переносят электроны, свободно движущиеся в полосе проводимости, мы говорим, что такой тип загрязненного кремния называется n-типом (от слова negative — отрицательный).

Правая часть рис. 2 показывает, что происходит, если вместо фосфора мы загрязняем кремний атомами алюминия. Атомы алюминия вновь располагаются среди атомов кремния и прекрасно замещают их. Разница в том, что у алюминия на один электрон меньше, чем у кремния. Так в чистом кристалле появляются дырки, в то время как при фосфорном загрязнении появлялись лишние электроны. Эти дырки расположены вблизи от атомов алюминия, и их можно заполнить электронами, которые перескакивают из валентной зоны соседних атомов кремния. «Дырчатый» акцепторный уровень показан на рисунке. Он располагается прямо над валентной зоной, потому что электрон из атома кремния в валентной зоне может легко перескочить в дырку, оставленную атомом алюминия. В этом случае естественно считать, что электрический ток переносится дырками, поэтому такой тип загрязненного кремния называется р-типом (от слова positive — положительный). Как и в предыдущем случае, при комнатной температуре уровень алюминиевого загрязнения может быть не более одной триллионной, прежде чем благодаря движению дырок из алюминия пойдет ток.

Итак, мы пока просто доказали, что можно сделать такой кусок кремния, который будет проводить ток — дав возможность либо электронам из атомов фосфора двигаться в зоне проводимости, либо дыркам из атомов алюминия двигаться в валентной зоне. Ну и что?

На рис. 3 показано, что мы на пути к чему-то важному: он демонстрирует, что происходит, если сложить вместе два куска кремния — один n-типа и один р-типа. Изначально в области n-типа движутся электроны из фосфора, а в области р-типа — электроны из алюминия.

Соединение двух кусков кремния

Рис. 3. Соединение двух кусков кремния — n-типа и р-типа

В итоге электроны из области n-типа перетекают в область р-типа, а электроны из области р-типа — в область n-типа. В этом нет никакой загадки; электроны и дырки змеятся по сочленению двух материалов, как капля чернил растворяется в ванне с водой. Но поскольку электроны и дырки движутся в противоположных направлениях, они оставляют за собой области положительного заряда (в области n-типа) и области отрицательного заряда (в области р-типа). Такое расположение зарядов препятствует дальнейшей миграции по правилу «одноименные заряды отталкиваются», со временем наступает баланс и миграция заканчивается.

На второй иллюстрации рис. 3 показано, как можно описать это явление на языке потенциалов. Демонстрируется, как электрический потенциал изменяется по всему сочленению. В глубине области n-типа эффект сочленения мал, и поскольку наступило состояние равновесия, ток отсутствует. Значит, в этой области потенциал постоянен. Прежде чем двигаться дальше, надо еще раз разъяснить, почему нам важен потенциал: он просто показывает, какие силы действуют на электроны и дырки. Если потенциал ровный, электрон не будет двигаться, как не двигается мяч, лежащий на ровном полу.

Если потенциал уходит вниз, можно предположить, что электрон, находящийся вблизи этого падающего потенциала, будет тоже «катиться вниз». К сожалению, принято довольно неудобное решение считать, что снижение потенциала означает «повышение» электрона, то есть электроны потекут вверх. Иными словами, падающий потенциал служит для электрона барьером, что мы и изобразили на рисунке. Это сила, подталкивающая электрон прочь от области р-типа, как следствие создания отрицательного заряда благодаря произошедшей ранее миграции электронов. Эта сила предотвращает дальнейшее движение электронов из кремния n-типа в кремний р-типа. Использование снижения потенциала для иллюстрации восхождения электрона на самом деле не так глупо, как кажется, потому что сейчас большая наглядность достигается для дырок, так как они естественным образом текут вниз. Можно считать, что наш способ представления потенциала (движущегося с высокой точки слева до низкой точки справа) корректно описывает и тот факт, что падение потенциала не позволяет дыркам покинуть область р-типа.

Третья иллюстрация на рисунке — аналогия с текущей водой. Электроны слева готовы и намерены потечь вниз по проводу, но барьер мешает им сделать это. Точно так же дырки в области р-типа скапливаются не с той стороны барьера; водяной барьер и падение потенциала — два разных способа представления одного и того же. Так обстоят дела, если просто скрепить вместе два куска кремния — n-типа и р-типа. Однако их скрепление требует несколько больших усилий, чем можно предположить: их нельзя просто склеить, потому что такое сочленение не позволит электронам и дыркам свободно перетекать из одной области в другую. Самое интересное, если подключить этот pn-переход к батарее, это позволит повышать или понижать потенциальный барьер между областями n-типа и р-типа. Если понизить потенциал области р-типа, то он упадет еще сильнее, так что электронам и дыркам станет еще сложнее двигаться по сочленению. Но повышение потенциала области р-типа (или ослабление потенциала области n-типа) подобно понижению плотины, сдерживающей воду. Электроны области n-типа немедленно начинают затоплять область р-типа, а дырки движутся столь же массово, но в противоположном направлении. Таким образом pn-переход может использоваться как диод: он может обеспечить движение тока, правда, только в одном направлении43. Но диоды не главный предмет нашего интереса.

Рис. 4 — это набросок устройства, изменившего мир, — транзистора. Он показывает, что произойдет, если сделать своеобразный сэндвич — слой кремния p-типа разместить между двумя слоями кремния n-типа. Здесь нам хорошую службу сослужит объяснение про диод, потому что идеи примерно те же самые. Электроны движутся из областей n-типа в области р-типа, а дырки движутся в обратном направлении, пока из-за падений потенциала в сочленениях между слоями такое взаимопроникновение не прекращается. В изолированном виде можно представить себе существование двух резервуаров электронов, разделенных барьером, и один резервуар дырок, зажатый между ними.

Транзистор

Рис. 4. Транзистор

Самое интересное происходит, когда мы прикладываем напряжение к области n-типа с одной стороны и к области р-типа в середине. Приложение положительного напряжения заставляет подняться плоскую часть кривой слева (на величину Vc) и плоский участок в области р-типа (на величину Vb). Это показано сплошной линией на центральной диаграмме. Такой способ расположения потенциалов имеет серьезные последствия: создается настоящий водопад электронов, которые преодолевают сниженный центральный барьер и направляются в область n-типа слева (напомним, что электроны текут «в горку»). Если Vc больше, чем Vb, то поток электронов будет односторонним и электроны слева не смогут преодолеть область р-типа. Как бы безобидно ни звучали эти фразы, но мы только что описали электронный клапан. Итак, посредством применения напряжения к области р-типа мы можем включать и выключать электрический ток.

И вот завершение: мы готовы к полному осознанию потенциала скромного транзистора. На рис. 5 снова демонстрируем действие транзистора через параллели с текущей водой. Ситуация «закрытого клапана» полностью аналогична тому, что происходит в области р-типа без всякого напряжения. Применение напряжения соответствует открытию клапана. Под двумя трубками мы изобразили символ, который обычно используется для транзистора, и с известной долей воображения можно утверждать, что он даже похож на клапан.

Аналогия транзистора с водяными трубками

Рис. 5. Аналогия транзистора с водяными трубками

Что можно сделать с клапанами и трубками? Мы можем создать компьютер, а если трубки и клапаны достаточно малы, то вполне серьезный компьютер.

Рис. 6 представляет собой концептуальную иллюстрацию того, как можно использовать трубку с двумя клапанами и создать нечто под названием «логический вентиль». У трубки слева оба клапана открыты, в результате снизу вытекает вода. У трубки в центре и трубки справа один клапан открыт и один клапан закрыт, так что, очевидно, вода снизу не выливается. Мы решили не изображать четвертый вариант — когда оба клапана закрыты. Если обозначить вытекание воды из днища трубок цифрой 1, отсутствие такого вытекания — цифрой 0, а также назначить для открытого клапана цифру 1, а для закрытого цифру 0, то можно изобразить действие четырех трубок (трех нарисованных и одной ненарисованной) уравнениями 1 и 1 = 1, 1 и 0 = 0, 0 и 1 = 0 и 0 и 0 = 0. Слово «и» — логический оператор, который используется здесь в техническом смысле: система из трубки и клапанов, которую мы только что описали, называется «вентиль и». Этот вентиль разрешает два ввода (состояние двух клапанов) и возвращает единственное значение (течет вода или нет), при этом единственный способ получить на выходе 1 — это ввести оба раза 1. Надеемся, теперь понятно, как можно с помощью пары подсоединенных транзисторов сделать «вентиль и» — принципиальная схема дана на этом рисунке.

b

Рис. 6. «Вентиль и», созданный с помощью водяной трубы и двух клапанов (слева) и пары транзисторов (справа). Второй вариант гораздо лучше подходит для создания компьютеров.

Мы видим, что ток начинает течь только в том случае, если оба транзистора включены (то есть если приложить положительное напряжение к областям р-типа, Vb1 и Vb2), а именно это и приводит к появлению «вентиля и».

Другая логическая схема изображена на рис. 7. Здесь вода будет вытекать снизу, если открыт любой из клапанов, и не будет вытекать, если оба клапана закрыты. Это называется «вентилем или», и ее можно описать аналогично предыдущей: 1 или 1 = 1, 1 или 0 = 1, 0 или 1 = 1 и 0 или 0 = 0. Соответствующая схема транзистора тоже показана на рисунке. Ток пойдет во всех случаях, кроме того, когда оба транзистора выключены.

или

Рис. 7. «Вентиль или», созданный при помощи двух водяных труб и двух клапанов (слева) или пары транзисторов (справа)

Именно на таких логических схемах и основана сила цифровых электронных приборов. Эти скромные строительные кирпичики дают сочетания логических схем, которые можно использовать для создания сколь угодно сложных алгоритмов. Можно назначить список вводимых значений в некоторых логических цепях (набор нулей и единиц), прогнать эти значения через некую изощренную конфигурацию транзисторов и получить на выходе список других значений (другой набор нулей и единиц). Таким образом мы создаем цепи для совершения сложнейших математических расчетов или принятия решений, основанных на том, какие клавиши нажимаются на клавиатуре. Затем мы снабжаем этой информацией устройство, которое выводит соответствующие символы на экран, или запускаем сигнал тревоги, если кто-то вламывается в дом, или посылаем поток текстовых символов по оптоволоконному кабелю (при этом они представлены в виде бинарного кода) на другой конец мира, или… да что угодно, потому что практически любой электронный прибор в нашем распоряжении под завязку набит транзисторами.

Потенциал их безграничен, и мы уже вовсю используем транзисторы для изменения мира. Не будет преувеличением сказать, что транзистор — самое важное изобретение за последние 100 лет: современный мир построен на полупроводниковых технологиях и сформирован ими. С практической точки зрения эти технологии спасли миллионы жизней: в особенности стоит указать на применение вычислительных устройств в больницах, преимущества быстрых, надежных и распространенных по всему миру коммуникационных систем, использование компьютеров в научных исследованиях и для контролирования сложных промышленных производств.

Уильям Шокли, Джон Бардин и Уолтер Браттейн в 1956 году получили Нобелевскую премию по физике «За исследование полу­проводников и открытие транзисторного эффекта». Возможно, никогда Нобелевская премия не присуждалась за работу, которая бы в такой степени непосредственно затрагивала жизни огромного числа людей.

Отрывок из книги Брайана Кокса, Джеффа Форшоу "Квантовая вселенная. Как устроено то, что мы не можем увидеть"

Просмотров: 255
Рейтинг: 5.0/1
Добавлено: 21.08.2016

Темы: физика, полупроводник, Электрон, наука, транзистор, квантовая физика
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]