03:00

Для суперструн физики подобрали квантовые аккорды

 

Неожиданное открытие совершила команда британских физиков. Согласно их модели, теория струн может напрямую прогнозировать поведение сцепленных квантовых частиц. А поскольку новую гипотезу можно протестировать в лабораторных условиях, это значит, что и теория, прозванная "непроверяемой", может наконец лишиться такого печального статуса.

 

Всю последнюю четверть века теория струн (ТС), она же на разных этапах развития и обобщения – теория суперструн и М-теория, набирала популярность как в обществе физиков, так и среди неспециалистов.

 

 

С самого начала ТС привлекала сторонников относительно гармоничным соединением известных сведений о невероятно малых частицах с моделями космологических процессов. Понемногу она становилась самым весомым кандидатом на роль "теории всего".

 

 

За время развития теории сами струны практически утратили свой изначальный облик. Сейчас они уже не одномерные, а одиннадцатимерные объекты (10 пространственных измерений и время).

 

Увы, несмотря на множество написанных книг, до сих пор никто не поставил ни единого опыта, который прямо доказал бы состоятельность ТС. В отличие, кстати, от теории относительности или квантовой механики. Таким образом, теория струн по сей день остаётся, по сути, чисто умозрительной конструкцией. 

 

 

Изменить ситуацию намерены Майкл Дафф (Michael Duff) и его команда из Имперского колледжа в Лондоне. Работа британцев, опубликованная 2 сентября в журнале Physical Review Letters (PDF-документ), в случае успеха призвана дать ТС колоссальный толчок.

 

 

Для проверки теории Дафф предлагает использовать хрестоматийный эффект квантовой сцепленности частиц. Несмотря на кажущуюся странность, явление квантовой запутанности не подлежит сомнению, так как оно тысячи раз было проверено экспериментально.

 

 

 

В систему сцепленных частиц теоретически можно включать большее их количество, хотя, разумеется, с каждой новой частицей сложность расчётов взаимного их влияния возрастает едва ли не по экспоненте.

 

 

На текущий момент взаимодействие трёх запутанных частиц существует лишь на бумаге (хотя недавно появились первые экспериментальные ласточки вроде фотонов-тройняшек). Для представления таких объектов применяются квантово-механические формулы, которые, как однажды заметил Дафф, сильно напоминают математическое описание чёрных дыр определённого класса, причём сделанное именно в рамках ТС.

 

 

Параллель может показаться надуманной, однако, по мнению британских физиков, она вполне позволяет, основываясь на соответствующих уравнениях ТС, вначале рассчитать поведение связанных квантовых частиц (в статье предлагается довести их количество до четырёх, чего раньше никому не удавалось даже в теории) и затем поставить опыт по измерению их параметров. 

 

 

Далее отважных экспериментаторов ждёт поистине драматический момент: они должны будут сравнить предсказания ТС с практическими результатами и, возможно, объявить о первом экспериментальном подтверждении того, что суперструнная модель действует.

 

 

 

Тут стоит сделать небольшое отступление и пояснить, что хотя чаще всего в просторечии используется именно термин "теория струн", с 1995 года по умолчанию под этими словами стоит понимать М-теорию. 

 

 

В истории теории условно выделяются три этапа. Первый длился примерно с 1968 по 1984 год, а открыл его Габриэле Венициано (Gabriele Veneziano), который с помощью определённого математического аппарата описал частицы — переносчики сильного взаимодействия. Чуть позже Йотиро Намбу (Yoichiro Nambu) предложил физическую интерпретацию модели Венециано.

 

 

Описание Намбу, если в двух словах, лишает упомянутые переносчики статуса точечных объектов, в которых "сосредоточены" все их физические характеристики. Японец предполагает, что на самом деле эти элементарные частицы – пространственно протяжённые одномерные объекты, находящиеся в состоянии устойчивого колебания.

 

 

Несмотря на то что такое представление было революционным для физики микромира, научное сообщество достаточно быстро охладело к новой теории, так как выяснило, что она входит в противоречие с экспериментально проверенной и более "надёжной" квантовой механикой.

 

Ситуацию спасла "первая струнная революция", открывшая второй этап развития теории – с 1984 по 1995 год. Основные достижения здесь связаны с именами Джона Шварца (John Schwarz) и новой фигуры – молодого гения Брайана Грина. Учёные в своих построениях сумели не только избежать противоречий между теорией струн и квантовой теорией, но и обобщить "струнный" подход на все известные к тому моменту типы частиц и поля. 

 

 

Тогда же теорию струн экстренно преобразовали в теорию суперструн в связи с формированием теории суперсимметрий между частицами вещества и поля. 

 

 

Третья же фаза истории ТС ("вторая струнная революция") длится до сих пор, а началась она с 1995 года, когда Эдвард Виттен (Edward Witten) рассмотрел сложившиеся к тому времени пять различных вариантов теории струн (суперструн) как общность, названную М-теорией. 

 

 

Вариантов расшифровки заглавной буквы любителями предлагалось множество, вплоть до остроумного варианта "мистическая". Однако наиболее близкий к реальности вариант – всё-таки мембранная теория.

 

 

Целью нынешнего исследования было не на бумаге, как это сделали Шварц и Грин, а на опыте доказать, что М-теория не противоречит квантовой механике. И хотя никто не ожидал столь спонтанного открытия возможной прямой корреляции ТС и явления квантовой сцепленности, британцы готовы с радостью ухватиться за эту соломинку и наконец-то проверить различные физические предсказания, сделанные на основе струнной теории.

 

 

Любопытно, что момент рождения новой гипотезы о связи ТС и квантовой запутанности чем-то напоминает историю с яблоком Ньютона. По словам Даффа, когда его осенило, он сидел на конференции в Тасмании и внимал презентации своего коллеги – тот представлял математическую формулу, описывающую квантовую сцепленность.

 

 

"И тут меня осенило – представленная формула была очень похожа на ту, что я разработал несколько лет назад для описания чёрных дыр "с точки зрения" ТС, – вспоминает Майкл. – Вернувшись в Великобританию, я проверил мои записи и убедился в сходстве математик из таких разных с виду областей".

 

Неспециалисту может показаться невероятным, что с помощью теории, изначально разработанной для описания эволюции и строения Вселенной, можно прогнозировать поведение квантовых систем. Однако авторы окончательной версии ТС на какое-то такое "чудо" и надеялись. И вот оно явлено – осталось лишь научиться создавать "четверные" сцепленные частицы.

 

 

"Проверочный эксперимент может рассказать нам нечто очень глубокое и фундаментальное о мире, в котором мы живём. С другой стороны, всё это может оказаться лишь загадочным совпадением", – очень сдержанно заключает Дафф.

"Хотя положительный результат эксперимента и не уравняет теорию струн с "теорией всего", он будет очень важным шагом для теоретиков ", – осторожно комментирует Майкл Дафф в пресс-релизе колледжа (фото Imperial College London).

Источник

 

 

 


Просмотров: 1988
Рейтинг: 0.0/0
Добавлено: 07.09.2010
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]