03:00

Квантовый компьютер

3 кубита квантового регистра против 3 битов обычного 

Квантовый компьютер — гипотетическое[1] вычислительное устройство, которое путем выполнения квантовых алгоритмов существенно использует при работе квантовомеханические эффекты, такие как квантовый параллелизм и квантовая запутанность.

Содержание понятия «квантовый параллелизм» может быть раскрыто так: «Данные в процессе вычислений представляют собой квантовую информацию, которая по окончании процесса преобразуется в классическую путём измерения конечного состояния квантового регистра. Выигрыш в квантовых алгоритмах достигается за счет того, что при применении одной квантовой операции большое число коэффициентов суперпозиции квантовых состояний, которые в виртуальной форме содержат классическую информацию, преобразуется одновременно» [1].

Под квантовой запутанностью, которую называют также «квантовой суперпозицией», обычно понимается следующее: «Вообразите атом, который мог бы подвергнуться радиоактивному распаду в определенный промежуток времени. Или не мог бы. Мы можем ожидать, что у этого атома есть только два возможных состояния: «распад» и «не распад», /…/ но в квантовой механике у атома может быть некое объединенное состояние — «распада — не распада», то есть ни то, ни другое, а как бы между. Вот это состояние и называется «суперпозицией» [2].

Базовые характеристики квантовых компьютеров в теории позволяют им преодолеть некоторые ограничения, возникающие при работе классических компьютеров.

Кубиты

Идея квантовых вычислений, впервые высказанная Ю. И. Маниным и Р. Фейнманом состоит в том, что квантовая система из L двухуровневых квантовых элементов (кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, 2L-мерное гильбертово пространство состояний. Операция в квантовых вычислениях соответствует повороту в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубит может выполнять параллельно 2L операций.

Предположим, что имеется один кубит. В таком случае после измерения, в так называемой классической форме, результат будет 0 или 1. В действительности кубит — квантовый объект и поэтому, вследствие принципа неопределённости, может быть и 0, и 1 с определенной вероятностью. Если кубит равен 0 (или 1) со стопроцентной вероятностью, его состояние обозначается с помощью символа 0> (или 1>) — в обозначениях Дирака. 0> и 1> — это базовые состояния. В общем случае квантовое состояние кубита находится между базовыми и записывается, в виде  , где a² и b² — вероятности измерить 0 или 1 соответственно;  Более того, сразу после измерения кубит переходит в базовое квантовое состояние, аналогичное классическому результату.

Пример:
Имеется кубит в квантовом состоянии 

В этом случае, вероятность получить при измерении0 составляет (4/5)²=16/25 = 64 %,
1 (-3/5)²=9/25 = 36 %.

В данном случае, при измерении мы получили 0 с 64 % вероятностью.
Тогда кубит перескакивает в новое квантовое состояние 1*0>+0*1>=0>, то есть, при следующем измерении этого кубита мы получим 0 со стопроцентной вероятностью.

Перейдем к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: 00>, 01>, 10> и 11>. И наконец, общее квантовое состояние системы имеет вид  . Теперь a² — вероятность измерить 00 и т. д. Отметим, что a²+b²+c²+d²=1 как полная вероятность.

В общем случае, системы из L кубитов у неё 2L классических состояний (00000…(L-нулей), …00001(L-цифр), … , 11111…(L-единиц)), каждое из которых может быть измерено с вероятностями 0—100 %.

Таким образом, одна операция над группой кубитов затрагивает все значения, которые она может принимать, в отличие от классического бита. Это и обеспечивает беспрецедентный параллелизм вычислений.

Вычисление

Упрощённая схема вычисления на квантовом компьютере выглядит так: берется система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством базовых квантовых операций. В конце измеряется значение, и это результат работы компьютера.

Оказывается, что для построения любого вычисления достаточно двух базовых операций. Квантовая система дает результат, только с некоторой вероятностью являющийся правильным. Но за счет небольшого увеличения операций в алгоритме можно сколь угодно приблизить вероятность получения правильного результата к единице.

С помощью базовых квантовых операций можно симулировать работу обычных логических элементов, из которых сделаны обычные компьютеры. Поэтому любую задачу, которая решена сейчас, квантовый компьютер решит, и почти за такое же время. Следовательно, новая схема вычислений будет не слабее нынешней.

Чем же квантовый компьютер лучше классического? Большая часть современных ЭВМ работают по такой же схеме: n бит памяти хранят состояние и каждый такт времени изменяются процессором. В квантовом случае система из n кубитов находится в состоянии, являющимся суперпозицией всех базовых состояний, поэтому изменение системы касается всех 2n базовых состояний одновременно. Теоретически новая схема может работать намного (в экспоненциальное число раз) быстрее классической. Практически (квантовый) алгоритм Гровера поиска в базе данных показывает квадратичный прирост мощности против классических алгоритмов. Пока в природе их не существует.

Алгоритмы
* Алгоритм Гровера позволяет найти решение уравнения   за время .

* Алгоритм Шора позволяет разложить натуральное число n на простые множители за полиномиальное от log(n) время.
* Алгоритм Дойча — Джоза позволяет «за одно вычисление» определить, является ли функция двоичной переменной f(n) постоянной (f1(n) = 0, f2(n) = 1 независимо от n) или «сбалансированной» (f3(0) = 0, f3(1) = 1; f4(0) = 1, f4(1) = 0).

Было показано, что не для всякого алгоритма возможно «квантовое ускорение».

Квантовая телепортация

Алгоритм телепортации реализует точный перенос состояния одного кубита (или системы) на другой. В простейшей схеме используются 4 кубита: источник, приёмник и два вспомогательных. Отметим, что в результате работы алгоритма первоначальное состояние источника разрушится — это пример действия общего принципа невозможности клонирования — невозможно создать точную копию квантового состояния, не разрушив оригинал. На самом деле, довольно легко создать одинаковые состояния на кубитах. К примеру, измерив 3 кубита, мы переведем каждый из них в базовые состояния (0 или 1) и хотя бы на двух из них они совпадут. Не получится скопировать произвольное состояние, и телепортация — замена этой операции.

Телепортация позволяет передавать квантовое состояние системы с помощью обычных классических каналов связи. Таким образом, можно, в частности, получить связанное состояние системы, состоящей из подсистем, удаленных на большое расстояние.

Применение квантовых компьютеров

Специфика применения

Может показаться, что квантовый компьютер — это разновидность аналоговой вычислительной машины. Но это не так: по своей сути это цифровое устройство, но с аналоговой природой.

Основные проблемы, связанные с созданием и применением квантовых компьютеров:
- необходимо обеспечить высокую точность измерений;
- внешние воздействия могут разрушить квантовую систему или внести в неё искажения.

Приложения к криптографии

Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло больше бы времени, чем возраст Вселенной, в сотни раз. При помощи алгоритма Шора эта задача делается вполне осуществимой, если квантовый компьютер будет построен.

Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений[3]. Прототипы систем подобного рода находятся на стадии разработки[4].

Реализации

Канадская компания D-Wave заявила в феврале 2007 года о создании образца квантового компьютера, состоящего из 16 кубит (устройство получило название Orion). Однако информация об этом устройстве не отвечала строгим требованиям точного научного сообщения; новость не получила научного признания. Более того, дальнейшие планы компании (создать уже в ближайшем будущем 1024-кубитный компьютер) вызвали скепсис у членов экспертного сообщества[5].

В ноябре 2007 года та же компания D-Wave продемонстрировала работу образца 28-кубитного компьютера онлайн на конференции, посвященной суперкомпьютерам[6]. Данная демонстрация также вызвала определенного рода скепсис.

В декабре 2008 года компания организовала проект Распределенных вычислений AQUA@home(Adiabatic QUantum Algorithms) [7], в котором тестируются алгоритмы, оптимизирующие вычисления на адиабатических сверхпроводящих квантовых компьютерах D-Wave.

Примечания:


1  Холево, А. КВАНТОВАЯ ИНФОРМАТИКА: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ // В МИРЕ НАУКИ. — июль 2008. — № 7
2 Quantum entanglement
3 Валиев, К. А. Квантовая информатика: компьютеры, связь и криптография // Вестник российской академии наук. — 2000. — Том 70. — № 8. — С. 688—695
4 Созданы прототипы квантовых компьютеров
5 D-Wave восхитила журналистов и возмутила ученых
6 Сайт компании D-Wave
7 Сайт AQUA@home


Просмотров: 2277
Рейтинг: 0.0/0
Добавлено: 28.04.2009
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]